

Gallstones, Common Bile Duct Stones, CBD Injury: The Surgeon

Martin Smith Chris Hani Baragwanath Hospital University of the Witwatersrand Johannesburg South Africa

No disclosures

- Making Laparoscopic Cholecystectomy safer
- Causes of Bile Duct Injuries
- Management of Common Bile Duct Injuries
- Management of Post operative Biliary strictures
- Common Bile Duct Stones
- Alternative procedures for cholecystectomy

The SAGES Safe Cholecystectomy Program

- Strategies for Minimizing Bile Duct Injuries: Adopting a Universal Culture of Safety in Cholecystectomy
 - Patients benefit from reduced pain, faster return to normal activities, and reduced risk of surgical site infection with a laparoscopic approach compared to an open operation.

Strategies employed to develop safe cholecystectomy

- 1. Use the Critical View of Safety (CVS) **√**
- Perform an Intra-operative Time-Out during laparoscopic cholecystectomy prior to clipping, cutting or transecting any ductal structures. √
- 3. Understand the potential for aberrant anatomy in all cases \checkmark
- 4. Make liberal use of cholangiography or other methods to image the biliary tree intraoperatively ?
- Recognize when the dissection is approaching a zone of significant risk and halt the dissection before entering the zone√
- 6. Get help from another surgeon when the dissection or conditions are difficult. √

Laparoscopic bile duct injuries

magnitude of the problem

- incidence 0.1%-0.5%
- bile leak 0.3% 0.5% (85% from cystic duct)
- 34%-49% of surgeons in USA and British Columbia
- 50%-75% missed during the operation
- 60%- 80% delayed recognition

bile duct injury is serious

- leads to considerable morbidity
- inappropriate treatment may cause death
- long-term sequel may be devastating
- reduces QOL

15% of all surgical indemnities are for BDI

may ruin a surgeon's career

survival after bile duct injury

collected series(15) 602 patients no of deaths 17 (2.8%)

Flum et al JAMA 2003

Impaired Quality of Life 5 Years After Bile Duct Injury During Laparoscopic Cholecystectomy A Prospective Analysis

Djemila Boerma, PhD,* Erik A. J. Rauws, PhD,† Yolande C. A. Keulemans, PhD,* Jacques J. G. H. M. Bergman, PhD,† Huug Obertop, PhD,* Kees Huibregtse, PhD,† and Dirk J. Gouma, PhD*

From the Departments of *Surgery and †Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands

Health and financial disaster

- Cost: 4.5-26 X uncomplicated cases
 - (total cost \$ 51,411)
 - average 32 days hospital stay
 - 10 days outpatient care days
 - 2 deaths 4%
- 43% intraoperative recognition
 - The inflation-adjusted mean total cost of repair was R215 711 (range R68 764 - 980 830).
 - Theatre costs 22%

Hofmeyr SAMJ. 2015

– ICU costs 21%

Savader et al Ann Surg 1997

Causes of bile duct related complications

- misidentification of biliary anatomy
- technical errors
 - cystic duct leak
 - thermal injuries
 - bleeding
 - "tenting"

How does this occur?

Way has used scientific principles from human factor r underst – misc anat – skills section

Way et at al Ann Surg 2003

"Laparoscopic bile duct injury is a result of misperception; not from inadequate knowledge of how to proceed or deficiencies in manual skills......" "Nor should it be misconstrued as a character defect; cognitive biases are normal features of the way humans reason".

Way et al Ann Surg 2003

how can we make it a safer procedure ?

- training
- identifying the high risk patient
- operative cholangiography
- refinements to operative technique
 - "Subtotal Cholecystectomy"
- built in "stopping rules"

who are at risk for bile duct injury ?

- elderly, males, obesity
- cholecystitis(previous attacks)
- gallstone pancreatitis
- previous BDS
- Mirizzi syndrome

not for the beginner

No risk factors in 80% of BDI

Role of Routine Intra Operative Cholangiograms

Protagonists

- reduces incidence of BDI
- early recognition
- less severe injury
- less inclined to misinterpret

Sceptics

- Does not prevent BDI
- BDI frequently occur before IOC
- BDI may occur as a result of IOC
- IOC frequently misses
 BDI
- BDI may occur after IOC

operative cholangiography

 collected series
 % bile duct injury

 • routine
 0.20 – 0.39

 • selective
 0.30 – 0.60

 • none
 0.34 – 0.58

Debru et al Surg Endosc 2005

Cholangiography and the risk of common bile duct injury 1.5 million laparoscopic cholecystectomies

Table 3. Rate of Common Bile Duct (CBD) Injury Based on the Surgeon's Frequency of Intraoperative Cholangiogram (IOC) Use With and Without IOC Use

	Rate of CBD Injury, %		
IOC Use Categories	Overall*	Without IOC	With IOC†
<25% (n = 741 742)	0.52	0.49	0.78
25%-49% (n = 279270)	0.54	0.56	0.50
50%-75% (n = 211 880)	0.51	0.85	0.31
>75% (n = 337 469)	0.43	1.50	0.26
All (N = 1 570 361)	0.50	0.58	0.39

*Differences between the overall rate in the greater than 75% IOC use group compared with all other levels of IOC use were statistically significant (P<.001).

+Differences between CBD rates with and without IOC were all statistically significant (P<.001).

Flum et al JAMA 2003

verdict - operative cholangiography

- routine: continue if that's the way you were taught
- selective: ? doubt about anatomy
- none: extra care to define biliary anatomy
- IOC is not a substitute for careful delineation of the biliary anatomy

how can we prevent bile duct injury ?

there is no substitute for meticulous dissection of Calot's triangle with the emphasis on identifying the cystic duct / infundibulum junction.

"the critical view of safety" (Steven Strasberg)

Figure 4. Different appearances of the cystic plate. (A) Critical view of safety (CVS) is seen from in front of the gallbladder as usually shown. The cystic plate is very thin. (B) CVS is seen with the gallbladder reflected to the left so that a posterior view of the triangle of Calot is shown. The cystic plate is thicker and whitish. Both views fulfill criteria for CVS.

Need a bail out procedure to prevent CBDI in the difficult Cholecystectomy

Subtotal Cholecystectomy

Subtotal Cholecystectomy—"Fenestrating" vs "Reconstituting" Subtypes and the Prevention of Bile Duct Injury: Definition of the Optimal Procedure in Difficult Operative Conditions

Steven M Strasberg, MD, FACS, Michael J Pucci, MD, FACS, L Michael Brunt, MD, FACS, Daniel J Deziel, MD, FACS J Am Coll Surg 2016;222:89-96.

Figure 6. Subtotal reconstituting cholecystectomy. (A) The free, peritonealized portion of the

Technical approaches to the Anatomy

- Critical view of safety routine approach
- Infundibulum approach sometimes of value but avoid when significant inflammation present
- Start by identifying the cystic duct common bile duct junction avoid
- Subtotal cholecystectomy in very selective cases

Risk for conversion

Preoperative Risk Factors for Conversion of Laparoscopic Cholecystectomy to Open Surgery – A Systematic Review and Meta-Analysis of Observational Studies

Josephine Philip Rothman^a Jakob Burcharth^a Hans-Christian Pommergaard^a Søren Viereck^b Jacob Rosenberg^a

Table 3. Summary of results from the meta-analysis

Risk factors for conversion	Might be a risk factor	Not a risk factor for conversion
Gallbladder wall >4–5 mm on preoperative ultrasound Age >60 or 65 Male gender Acute cholecystitis Contracted gallbladder on ultrasound	Previous abdominal surgery BMI ASA-score	Body temperature Diabetes mellitus White blood cell count

Dig Surg 2016;33:414-423

Recognition of bile leaks / duct injuries

- Intra-operative
- Early post-operative

key to successful outcome

- bile leak from drain site
- ascites
- abnormal LFT's / Obstructive jaundice
- Delayed presentation

consequence of biliary stricture

Classification of Injury

Factors that influence outcome not noted

- Vascular injury
- Time at which injury recognised
- Bile leak
 - Ascites
 - Drain site leak
- Portal hypertension
- Atrophy/ Hypertrophy
- Previous repair

Intra-operative detection

partial defect

- primary repair
- avoid T- tube
- drain

complete transection

hepatico-jejunostomy
 (HPB surgeon)
 drain and refer

Principles of Repair

Ideal Scenario

- Early detection
- Maximum information on biliary anatomy
- Specialised multi-disciplinary unit

Technique

- Tension free hepatico-jejunostomy
- Mucosa to mucosa anastomosis
- Well vascularised BD

Successful outcome after bile duct repair

the surgeon	factor
-------------	--------

success rate

- "injuring" surgeon 17-27%
- specialist surgeon 79-95%

50-75% repairs are still done by primary surgeon !

Steward & Way Arch Surg 1995 Caroll et al Surg Endosc 1998 Flum et al JAMA 2003

Clinical Scenariopost operative bile leak from drain site

Complete Transection

Partial Injury

Vascular injuries

- Incidence of hepatic artery injury about 7%
- Ischemic injury to intrahepatic ducts may result in recurrent Hepaticojejunostomy strictures and delayed strictures to IHD'S
- No consensus whether to preform routine angiography
 - complex or high injury

major bleeding

selective angiography

Timing of definitive bile duct repair

protagonists for early repair (< 1-2 weeks)

- shorter duration of treatment
- less costly
- improve QOL
- equivalent results to delayed repair

Specialised HPB units

Steward and Way Arch Surg 1995 Boerma et al Ann Surg 2001 Sicklick et al Ann Surg 2005 Thomson et al Br J Surg 2006

Early repair (< 1-2 weeks)

contraindicated

- Sepsis not under control
- Confluence and vascular injury
- Significant diathermy injury
- Surgical expertise not available

Post CBDI stricture

- Surgery remains the gold standard against which other techniques must be compared
- Most series from before the 90's
- 80-90% success with low re-stricture rate
- Referral to proper skills first repair best chance of success
- Avoid bile duct to bile duct anastamosis
 - Terreblache and Northover description of blood supply

Lillimoe: Johns Hopkins Medical Institute

-156 patients

- 41% had previous repair
 - Half at time of initial surgery
 - Bile duct to bile duct repair 50% of cases
- LC injuries more likely to be Bismuth 3,4,5,
- Surgery
 - Hepatico-jejunostomy
 - All stented for prolonged period
 - 90% success
 - » Repair by general surgeon success 17%
 - » Repair in referral centre success 94%

- Role for hepatic resection
- Role of trans-anastomotic stents remain controversial
- Follow up long term
 - -2/3 failure within 2 years
 - 80% within 5years
 - 20% after 5 years

Management of Post-Cholecystectomy Benign Bile Duct Strictures: Review

Sadiq S. Sikora

Indian J Surg (January-February 2012) 74(1):22-28

Endotherapy vs Surgery

AMC

Up to 2 stents; replaced 3 monthly and placed for 1 year

Endotherapy vs Surgery

"Support surgery but definite place for stenting"

Arch Surg 2000;135

Endotherapy

- High recurrence rates
- Multiple procedures
- Need for surgery

• New data emerging about MES particularly fully covered and even biodegradable

CLINICAL—BILIARY

Successful Management of Benign Biliary Strictures With Fully Covered Self-Expanding Metal Stents

Figure 4. Stricture resolution after FCSEMS placement.

Gastroenterology 2014;147:385–395

Recommendations

- Start with endotherapy (Bismuth 1 & 2)
 If failed at 1 year go to surgery
- Complete transection surgery
- Early unsuccessful surgical repair repeat surgery - percutaneous intervention have good results here
- Endo therapy does not preclude surgery but often surgery precludes later endo- therapy

Common Bile Duct Stones

- Prediction of CBDS
 - CBDS 10-33% of symptomatic cholecystolithiasis
 - 10-40% will still have normal CBD at ERCP
 - Silent Stones 5-10%
 - Retained stones after ERCP 2-15%
 - MRCP Sen 95%; Specificity 97%

Management Approach

- Single procedures vs Two Stage procedures
 <u>Single</u>
 - LC / LCBDE
 - Open Cholecystectomy and CBDE

Two Stage

- LC / ERCP
 - ERCP
- » Preoperative
- » Intraoperative
- » Post operative

- LCBDE
 - No ES (theoretical)
 - Avoids Duodenal biliary reflux
 - Avoids ERCP complications
 - ES stenosis
 - Avoids metaplasia of CBD

Pre op ERCP

- No clear evidence to support or refute this
 - Specific indications
 - Cholangitis
 - Indicated in SAP
 - Persistent OJ
 - All others option exist

- Intra operative ES
 - Technically difficult
 - Rendezvous technique and therefore may reduce complications of ERCP
- Post op
 - Ramping up approach
 - Transcystic stent inserted

Outcomes

- Duct Clearance
- M&M
- Conversion
- Length of say (LOS)
- Cost

- Meta-analysis and Cochrane reviews

Cochrane review 2013
 Surgical versus endoscopic treatment of bile duct stones (Review)

Dasari BVM, Tan CJ, Gurusamy KS, Martin DJ, Kirk G, McKie L, Diamond T, Taylor MA

- 2005
- 16 RCT

• WJG 2012

Include open CBDE vs ERCP

- 7 RCT LC/LCBDE vs LC and ERCP
 - Clearance, morbidity, mortality, conversion. LOS, time,

Two-stage vs single-stage management for concomitant gallstones and common bile duct stones

~	Experir	mental	Con	trol		Risk difference			R	isk difference	e	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI	Year		М-Н,	random, 959	% CI	
1.1.1 Preoperative ERCP	+ LC vs LC	+ LCB	DE									-
Cuschieri et al ^[26]	82	98	90	109	16.3%	0.01 [-0.09, 0.11]	1999			+		
Sgourakis et al ^[28]	27	32	24	28	13.8%	-0.01 [-0.19, 0.17]	2002					
Noble et al ^[29]	20	36	38	38	14.4%	-0.44 [-0.61, -0.28]	2009		-	•		
Bansal et al ^[5]	13	15	14	15	12.7%	0.07 [-0.28, 0.15]	2010					
Rogers et al ^[24]	30	31	15	17	14.3%	0.09 [-0.08, 0.25]	2010					
Subtotal (95% CI)		212		207	71.4%	-0.08 [-0.27, 0.10]				•		
Total events	172		181									
Heterogeneity: $Tau^2 = 0$.	$04, \chi^2 = 26$	5.23, df	= 4 (P <	0.0001); <i>I</i> ² = 85%	6						
Test for overall effect: Z	= 0.91 (P =	= 0.36)										
1.1.2 LC + postperative I	ERCP <i>vs</i> LC	+ LCBI	DE									
Rhodes et al ^[25]	30	40	30	40	13.5%	0.00 [-0.19, 0.19]	1998					
Nathanson et al ^[27]	32	45	40	41	15.1%	-0.26 [-0.41, -0.12]	2005					
Subtotal (95% CI)		85		81	28.6%	-0.14 [-0.41, 0.13]				•		
Total events	62		70									
Heterogeneity: $Tau^2 = 0$.	$03, \chi^2 = 5.$	16, df =	= 1 (P = 0).002); .	r ² = 81%							
Test for overall effect: Z	= 1.02 (P =	= 0.31)										
Total (95% CI)		297		288	100.0%	-0.10 [-0.24, 0.04]				•		
Total events	234	-	251			2 ·····						
Heterogeneity: $Tau^2 = 0$.	$03, \gamma^2 = 33$	3.55, df	= 6 (P <	0.00 00	(1); $I^2 = 82$	2%		L			1	
	- 1 20 (0	- 0 17)	× .					-2	-1	0	1	2
Test for overall effect: Z	- 1.39 12 -	- 0.1/1										

	Experir	nental	Con	trol		Risk ratio		Risk ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI	Year	M-H, fixed, 95% CI
1.2.1 Preoperative ERCP/	ST + LC	vs LC +	LCBDE					
Cuschieri et al ^[26]	17	136	21	133	32.0%	0.79 [0.44, 1.43]	1999	
Sgourakis et al ^[28]	6	32	5	28	8.0%	1.05 [0.36, 3.07]	2002	_ _
Noble et al ^[29]	14	47	19	44	29.6%	0.69 [0.40, 1.20]	2009	-8-
Rogers et al ^[24]	5	55	6	57	8.9%	0.86 [0.28, 2.67]	2010	
Subtotal (95% CI)		270		262	78.4%	0.79 [0.55, 1.13]		•
Total events	42		51					
Heterogeneity: $\chi^2 = 0.52$,	df = 3 (P	9 = 0.91); I ² = 0%	6				
Test for overall effect: Z =	= 1.29 (<i>P</i> =	= 0.20)						
1.1.2 LC + postperative E	RCP/EST	vs LC +	LCBDE					
Rhodes et al ^[25]	6	40	7	40	10.5%	0.86 [0.32, 2.33]	1998	_
Nathanson <i>et al</i> ^[27]	6	45	7	41	11.0%	0.78 [0.29, 2.13]	2005	e
Subtotal (95% CI)		85		81	21.6%	0.82 [0.40, 1.66]		-
Total events	12		14					
Heterogeneity: $\chi^2 = 0.02$,	df = 1 (P	= 0.90); I ² = 0%	6				
Test for overall effect: Z =	= 0.56 (P	= 0.58)						
Total (95% CI)		355		343	100.0%	0.79 [0.58, 1.10]		•
Total events	54		65					
Heterogeneity: $\chi^2 = 0.55$,	df = 5 (P	= 0.99); $I^2 = 0\%$	6			L	
Test for overall effect: Z =	= 1.40 (P	= 0.16)					0.005	0.1 0 10 200
Test for subgroup differences : $\chi^2 = 0.01$, df = 1 ($P = 0.93$); $I^2 = 0\%$							Favours LO	C + ERCP/EST Favours LC + LCBDE

С

	Experi	Experimental		Control		Risk ratio		Risk ratio		
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI	Year	M-H, fixe	d, 95% CI	
Sgourakis et al ^[28]	1	32	0	28	34.5%	2.64 [0.11, 62.23]	2002			
Cuschieri <i>et al</i> ^[26]	2	136	1	133	65.5%	1.96 [0.18, 21.31]	1999			
Total (95% CI)		168		161	100.0%	2.19 [0.33, 14.67]				
Total events	3		1							
Heterogeneity: $\chi^2 = 0.02$	2, df = 1 (A	? = 0.88); $I^2 = 09$	6			L	I		
Test for overall effect: Z	= 0.81 (P)	= 0.42)					0.001	0.1 0	10	1000
						Favours LC + ERCP/EST			Favours LC	+ LCBDE

Morbidity

Stone Clearance

Figure 3 Forest plot of meta-analysis. A: Two-stage [endoscopic retrograde cholangiopancreatography (ERCP)/endoscopic sphincterotomy (EST) + laparoscopic cholecystectomy (LC)] vs single-stage [LC + laparoscopic common bile duct exploration (LCBDE)] in stone clearance from the common bile duct; B: Two-stage (ERCP/ EST + LC) vs single-stage (LC + LCBDE) in postoperative morbidity; C: Two-stage (ERCP/EST + LC) vs single-stage (LC + LCBDE) in mortality; D: Two-stage (ERCP/ EST + LC) vs single-stage (LC + LCBDE) in conversion to other procedures; E: Two-stage (ERCP/EST + LC) vs single-stage (LC + LCBDE) in length of hospital stay; F: Two-stage (ERCP/EST + LC) vs single-stage (LC + LCBDE) in total operating time. CI: Confidence interval.

Interfering variable

- Routine practice in a centre
- Level of Skill and experience
- Available equipment
- Multidisciplinary teams

Issues not addressed

- Size of Stone
- Number of Stones
- Size of Duct
- Previous ERCP

Techniques for LCBDE

- Trans Cystic
- Trans Ductal
- Primary closure vs T Tube
- Indication for TC
 - Stones smaller than cystic duct
 - Small number
 - Stones distal to cystic duct junction

- Indication for TD
 - CBD diameter > 8-10mm
 - IOC
 - Stone > cystic duct
 - >5CBD stones
 - Low or medial cystic duct
 CBD junction
 - CHD stones

World J Surg (2014) 38:2403-2411

Transcystic or Transductal Stone Extraction during Single-Stage Treatment of Choledochocystolithiasis: A Systematic Review

Jan Siert K. Reinders • Dirk J. Gouma • Dirk T. Ubbink • Bert van Ramshorst • Djamila Boerma

World J Surg (2014) 38:2403-2411

*RCT	Stone Clearance	Bile leak	Morbidity
ERCP	52.9-97%	1%	9.1-38.3%
ТС	80.4-100%	1.7%	7-10.5%
TD	58.3-100%	11%	18.4-26.7%

Conclusion Stone clearance rates are comparable between the three modalities, but TD stone extraction is associated with a higher risk of bile leaks and should only be performed by highly experienced surgeons. TC stone extraction seems a more accessible technique with lower complication rates. If unsuccessful, per- or postoperative endoscopic stone extraction is a viable option.

Systematic review with meta-analysis of studies comparing primary duct closure and T-tube drainage after laparoscopic common bile duct exploration for choledocholithiasis

Mauro Podda¹^(D) · Francesco Maria Polignano¹ · Andreas Luhmann¹ · Michael Samuel James Wilson¹ · Christoph Kulli¹ · Iain Stephen Tait¹

Surg Endosc (2016) 30:845-861

Conclusions This comprehensive meta-analysis demonstrates that PDC after LCBDE is feasible and associated with fewer complications than TTD. Based on these results, primary duct closure may be considered as the optimal procedure for dochotomy closure after LCBDE.

16 studies; 1770 patients

Primary Closure better	than TTube
Post operative biliary peritonitis	OR 0.22; 95% CI 0.060 – 0.76 <i>P</i>= 0.02
Operating time	WMD, -22.27 , 95% Cl - 33.26 to -11.28, <i>P</i><0.00001
Postoperative hospital stay	WMD, -3.22; 95% CI -4.52 to – 1.92 <i>P</i><0.00001
Median hospital expenses	SMD, -137, 95% CI -1.96 to -0.77 P< 0.0001
Postoperative hospital stay decreased in PDC + BD vs TTD	WMD, -2.68; 95% CI -3.23 to -2.13 P< 0.00001

	PDC	PDC+BD	TTD
Morbidity <i>P= N/S</i>	7.4%	13.2%	11.6-16.2%

- Main complications
 - Biliary Fistula
 - CBD stricture
 - PDC increased stricture if CBD <7mm
- Biliary peritonitis lower in PDC
 PDC vs TTD P = 0.02

Post-Operative overall morbidity

	PD	C	110	0		Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events.	Total	Weight	M-H, Fixed, 95% Cl	Year		M-H, Fixed, 95% Cl	
Martin IJ 1995	4	41	10	61	15.2%	0.55 (0.16, 1.89)	1998			
Ha JP 2004	1	12	4	26	4.0%	0.50 (0.05, 5.03)	2004			
Leids Z 2008	6	40	11	40	19.5%	0.47 [0.15, 1.41]	2008			
El-Geidie 2010	1	61	5	61	10.3%	0.19 (0.02, 1.65)	2010	_		
Cal H 2011	6	137	6	102	13.8%	0.73 (0.23, 2.34)	2011			
Dong ZT 2014	13	101	15	93	28.5%	0.77 [0.34, 1.71]	2014			
Zhang HW 2014	5	93	4	92	8.0%	1.25 (0.32, 4.81)	2014		_ _	
Total (95% CD		485		475	100.0N	0.64 [0.41, 1.00]			•	
Total events	36		55						-	
Heterogeneity: Chi? -	2.85, df	- 6 (P	= 0.831	$1^{2} = 08$	6					
Test for overall effect	r Z = 1.9	6 (P = 0	0.05)					0.01	Favours (PDC) Favours (TTD)	100

Post-Operative biliary-specific complications

	PDC		TT	•		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fized, 95% CI	Year		M-H, Fixed	4, 95% CI	
Martin IJ 1998	4	41	8	61	16.2%	0.72 [0.20, 2.55]	1998	_			
Ha JP 2004	1	12	2	26	3.2%	1.09 [0.09, 13.35]	2004				
Leida Z 2008	4	40	8	40	20.1%	0.44 [0.12, 1.62]	2008				
El-Geidie 2010	1	61	5	61	13.7%	0.19 [0.02, 1.65]	2010				
Cai H 2011	6	137	5	102	15.3%	0.89 [0.26, 3.00]	2011				
Dong 2T 2014	10	101	10	93	26.1%	0.91 [0.36, 2.30]	2014				
Zhang HW 2014	2	93	2	92	5.5%	0.99 [0.14, 7.17]	2014				
Total (95% CI)		485		475	100.0%	0.69 [0.42, 1.16]			-		
Total events	28		40								
Heterogeneity: Chi ² =	2.60, df	= 6 (P	= 0.86);	$1^2 = 0.6$				0.01		***	100
Test for overall effect	Z = 1.41	(P = 0	0.160					0.01	Favours (PDC)	favours [TTD]	100

Re-Intervention : radiology | endoscopy

	POC		TTD		Odds Ratio				Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H. Fixed, 95% CI	
Martin U 1998	0	41	5	61	11.9%	0.29 (0.01, 6.13)	1998			
Leida Z 2008	3	40	3	40	16.5%	1.00 (0.19, 5.28)	2008			
El-Geidie 2010	0	61	2	61	14.8%	0.19 [0.01, 4.12]	2010	•		
Cal H 2011	0	137	1	102	10.2%	0.25 [0.01, 6.10]	2011	-		
Dong ZT 2014	6	101	6	93	35.0%	0.92 [0.28, 2.95]	2014			
Zhang HW 2014	2	93	2	92	11.7%	0.99 [0.14, 7.17]	2014			
Total (95% CI)		473		449	100.0%	0.69 (0.33, 1.45)			-	
Total events	11		16							
Heterogeneity: Chi2 =	1.92, df	-50	= 0.85);	$1^{2} = 09$	÷			0.01		100
Test for overall effect	Z - 0.9	8 (P - 6	0.33)					0.91	Favours (PDC) Favours (TTD)	100

Re-Intervention : surgery

	PDC		TTD		Odds Ratio						
Study or Subgroup	Events Tor		Events	Total	Weight	t M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI			
Martin U 1998	4	41	3	61	21.5%	2.09 [0.44, 9.87]	1998		_		
Leida Z 2008	0	40	3	40	34.1%	0.13 [0.01, 2.65]	2008	•			
El-Ceidie 2010	0	61	3	61	34.3%	0.14 [0.01, 2.69]	2010	·		_	
Dong ZT 2014	1	101	1	93	10.2%	0.92 [0.06, 14.92]	2014				
Total (95% CI)		243		255	100.0%	0.63 [0.23, 1.72]			-	-	
Total events	5		10								
Heterogeneity: Chi2 =	4.41, df	= 3 (P	= 0.221;	$1^2 = 32$	15					4	100
Test for overall effect	Z = 0.90) (P = 0	0.37)					0.01	Favours [PDC]	Favours [TTD]	100

Post-operative hospital stay

		PDC			πр			Mean Difference			Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Random, 95% CI	
Ha JP 2004	5	2.6	12	8.5	2.4	26	13.9%	-3.50 [-5.24, -1.76]	2004		-	
Leida Z 2008	5.28	2.2	40	8.3	3.6	40	15.6%	-3.02 [-4.33, -1.71]	2006			
El-Geidie 2010	2.2	1	61	5.5	1.8	61	18.0%	-3.30 [-3.82, -2.78]	2010		-	
Cai H 2011	3.1	2.4	137	5.7	4.3	102	16.9%	-2.60 [-3.53, -1.67]	2011			
Zhang HW 2014	6.95	0.73	93	12.05	1.08	92	18.3%	-5.10 [-5.37, -4.83]	2014			
Dong ZT 2014	3.2	2.1	101	4.9	3.2	93	17.4%	-1.70 [-2.47, -0.93]	2014		1	
Total (95% C0			444			414	100.0%	-3.22 [-4.52, -1.92]				
Heterogeneity: Tau ²	2.38; (Chi ² =	110.55	i, df = 5	5 (<	0.0000	$1); 1^2 = 90$	5%		100	10 10 10	100
Test for overall effect	: Z = 4.	86 (P	< 0.000	01)						-100	Favours [POC] Favours [TTD]	100

	PDC+		TTD			Odds Ratio		Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95N CI	Year		M-H, Fixed, 95% CI			
Martin U 1998	1	14	10	61	9,4%	0.39 (0.05, 3.35)	1998					
Kim EK 2003	7	50	5	36	13.6%	1.01 (0.29, 3.46)	2003					
Wei Q 2004	0	30	6	52	12.8%	0.12 [0.01, 2.16]	2004	·				
Grinistsos J 2005	•	21	6	32	13.6%	0.09 (0.01, 1.78)	2005	-				
Tang CN 2006	11	35	4	28	8.3%	2.75 [0.77, 9.86]	2006					
Kanamaru T 2007	4	30	2	15	6.3%	1.00 10.16, 6.191	2007					
Huang SM 2010	2	10	6	40	5.2%	1.42 [0.24, 8.27]	2010					
Mangla V 2012	2	31	5	29	13.1%	0.33 10.06, 1.861	2012					
Martinez-Boena D 2013	6	28	11	47	17.5%	0.89 [0.29, 2.76]	2013		_			
Total (95N CI)		249		340	100.0%	0.77 (0.47, 1.25)			-			
Total events	33		55									
Heterogeneity: Chi ² = 9.4	8. df = 8	$\theta^{p} = 0.$	301: 14 -	16%					-1			
Test for overall effect: Z -	- 1.06 (P	- 0.29						0.01	Favours (PDC+) Favours (TTD)	100		

	PDC	+	TT	0		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, Fixed	d, 95% CI	
Martin IJ 1998	1	14	8	61	9.8%	0.51 [0.06, 4.44]	1998				
Kim EK 2003	3	50	4	36	15.5%	0.51 [0.11, 2.44]	2003				
Wei Q 2004	0	30	6	52	16.7%	0.12 (0.01, 2.16)	2004	-			
Griniatsos J 2005	0	21	4	32	12,4%	0.15 (0.01, 2.89)	2005	·			
Tang CN 2006	6	35	z	28	6.5%	2.69 10.59, 14,511	2006		-		
Kanamaru T 2007	4	30	2	15	8.2%	1.00 [0.16, 6.19]	2007				
Huang SM 2010	1	10	- 4	40	5.1%	1.00 [0.10, 10.07]	2010				
Mangla V 2012	1	31	1	29	10.6%	0.29 [0.03, 2.95]	2012				
Martinez-Baena D 2013	5	28	7	47	15.2%	1.24 [0.35, 4.37]	2013			-	
Total (95% CI)		249		340	100.0%	0.69 (0.39, 1.24)			-		
Total events	21		40								
Heterogeneity: Chi ² = 6.8	0, df = 8	$\theta^{p} = 0.$	561: 1' =	0%							
Test for overall effect: Z -	1.23 (P	= 0.22						0.01	Favours [PDC+]	Favours [TTD]	100

	PDC	+	TTD			Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, Fixed, 95% CI	
Martin IJ 1998	0	14	2	61	12.3%	0.82 [0.04, 18.04]	1998			
Wei Q 2004	0	30	2	52	23.6%	0.33 [0.02, 7.13]	2004	_		
Griniatsos J 2005	0	21	1	32	15.3%	0.49 [0.02, 12.56]	2005	_		
Kanamaru T 2007	4	30	2	15	30.1%	1.00 (0.16, 6.19)	2007			
Martinez-Baena D 2013	1	28	2	47	18.7%	0.83 [0.07, 9.63]	2013			
Total (95% CI)		123		207	100.0%	0.71 [0.24, 2.15]			-	
Total events	5		9							
Heterogeneity: Chi2 = 0.4	5, df = 4	(P = 0	98); 12 =	0%				0.03		100
Test for overall effect: Z	0.61 (P	= 0.54)					0.01	Favours (PDC+) Favours (TTD)	100

	PDC+		TTD			Odds Ratio		Odds Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year		M-H, Fixe	5d, 95% CI			
Martin U 1998	1	14	3	61	9.5%	1.49 [0.14, 15.47]	1998			•			
Kim EK 2003	0	50	3	36	36.6%	0.09 [0.00, 1.89]	2003	+		-			
Wei Q 2004	0	30	1	52	9.9%	0.56 [0.02, 14.25]	2004	-					
Griniatsos J 2005	0	21	2	32	17.8%	0.28 [0.01, 6.21]	2005	_					
Martinez-Baena D 2013	1	28	4	47	26.2%	0.40 [0.04, 3.75]	2013						
Total (95% C0		143		228	100.0%	0.39 [0.12, 1.24]			-	ł			
Total events	2		13										
Heterogeneity: Chi2 = 2.2	1, df = 4	(P = 0.	.70); I ² =	0%						1 1	100		
Test for overall effect: Z =	1.60 (P	= 0.11)					0.01	Favours (PDC+)	Favours (TTD)	100		

	PDC+ TTD				Mean Difference		Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year		IV, Fixed, 95% CI	
Kim EK 2003	4.8	1.5	50	7.8	3.3	36	22.5%	-3.00 [-4.16, -1.84]	2003			
Griniatsos J 2005	3	0.8	21	5.5	1.8	32	59.3%	-2.50 [-3.21, -1.79]	2005			
Tang CN 2005	8.8	9.3	35	10	7.4	28	1.8%	-1.20 [-5.32, 2.92]	2006		+	
Huang SM 2010	7	3	10	10	3	40	6.9%	-3.00 [-5.08, -0.92]	2010		-	
Mangla V 2012	3.9	2	31	6.4	4.9	29	8.2%	-2.50 [-4.42, -0.58]	2012		1	
Martinez-Raena D 2013	5	10.2	28	12	10.6	47	1.3%	-7.00 [-11.84, -2.16]	2013		-	
Total (95% CI)			175			212	100.0%	-2.68 [-3.23, -2.13]				
Heterogeneity: Chi ² = 4.22, df = 5 (P = 0.52); l ² = 0%										100		
Test for overall effect: Z -	9.59 (8	< 0.1	00001)							200	Favours (PDC+) Favours (TTD)	100

Fig. 2 Meta-analysis of primary outcomes of interest. Primary duct closure (PDC) versus T-tube drainage (TTD) and primary duct closure + biliary drainage (PDC+) versus T-tube drainage (TTD)

Meta- analysis presented

- Significant heterogeneity
- Randomization at different times (pre-op vs after IOCG)

Alternative Procedures for Cholecystectomy

- Single Incision Cholecystectomy
- Robotics

Interventional Approaches to Gallbladder Disease

Todd H. Baron, M.D., Ian S. Grimm, M.D., and Lee L. Swanstrom, M.D.

N Engl J Med 2015;373:357-65.

Single-incision laparoscopic and mini-laparoscopic cholecystectomy have failed to gain widespread acceptance because the techniques are more challenging to learn, and the procedures prolong operative time and increase costs.¹⁷ Similarly, robotic-assisted laparoscopic cholecystectomy, which has technological appeal, has not been widely adopted for these reasons, in addition to the lack of proof of clinical benefit, limited access to the technology, and dramatically increased costs.18

- Making Laparoscopic Cholecystectomy safer
- Causes of Bile Duct Injuries
- Management of Common Bile Duct Injuries
- Management of Post operative Biliary strictures
- Common Bile Duct Stones
- Alternative procedures for cholecystectomy

SAVE THE DATE

May, 23rd-26th, 2017 Mainz, Germany

Congress chairman: Professor Dr. med. Hauke Lang, MA, FACS University Medical Center, Mainz

Registration & Abstract Submission: www.eahpba2017.com

